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Magnetohydrodynamic flow in a rectangular tube at 
high Hartmann number 
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Asymptotic forms, valid for high Hartmann number M ,  are obtained for the 
mean velocity for laminar magnetohydrodynamic flow in a rectangular tube. 
For a tube with non-conducting walls it is found that, neglecting exponentially 
damped terms, the mean velocity can be expressed in closed form in terms of 
tabulated functions. The first three terms of the expansion of the mean velocity 
in inverse powers of M are in extremely close agreement with a corresponding 
expansion obtained by Shercliff (1953) using a boundary-layer method. 

For perfectly conducting walls the first five terms of an expansion in inverse 
powers of M are obtained. 

1. Introduction 
The mathematical problems encountered in the theory of steady magneto- 

hydrodynamic flow through tubes are such that, under certain conditions, exact 
solutions can be obtained in series form by the method of separation of variables. 
Such solutions have been obtained for a rectangular tube by Shercliff (1953) 
for the case when the tube walls are non-conducting and by Chang tk Lundgreii 
(1961) for a tube with perfectly conducting walls. A similar type of exact solutioii 
for a circular tube with non-conducting walls has been obtained by Gold (1963) 
and others (e.g. Uflyand 1961). 

The above solutions are not particularly suitable for obtaining information 
about the solutions for large values of the Hartmann number 41 and in order to 
obtain information of this type it seems simpler to use approximate methods 
rather than attempt to obtain the asymptotic expansion of an exact solution. 
For a non-conducting rectangular duct the first three terms in an asymptot,ic 
expansion of the mean velocity for large M was obtained by Shercliff (1953) by 
means of a boundary-layer method. He also obtained the first term of such an 
expansion for a tube of arbitrary cross-section. Chang & Lundgren (1961) 
generalized Shercliff's work to obtain the corresponding first term for a thin- 
walled tube of arbitrary conductivity and cross-section. Shercliff (1962) has also 
generalized his earlier work to give the first two terms in the expansion of the mean 
velocity for tubes of arbitrary cross-section (but excludiiig rectangular ones) 
with non-conducting walls. An alternative approximate method for tubes of 
rectangular cross-section has been suggested by Grinberg (1961). It is somewhat 
involved and he does not, in fact, obtain a complete explicit solution. 
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For tubes of arbitrary cross-section it is clear that it will be necessary to 
employ approximate methods of solution, but it seems very difficult to obtain 
more than two or three terms of an asymptotic expansion in this manner. It 
therefore seems to be both of practical use and theoretical interest to examine 
whether it is possible to obtain asymptotic expansions for large M of some of 
the known exact solutions. The only case where this has been considered seems 
to  be in the work of Gold (1962) who obtains the first two terms in an asymptotic 
expansion of the velocity in a circular tube for high Af. The resulting expression 
is singular at two points on the tube surface but integration to determine the 
mean velocity produces a finite result. 

The present note considers the form for high M of the expressions for the mean 
velocity derived by Shercliff (1953) and Chang & Lundgren (1961) for a rect- 
angular tube with non-conducting and conducting walls, respectively. The general 
method of approach is to use various integral representations to reduce the 
expression for the mean velocity to an integral which can be evaluated asymptotic- 
ally by standard methods. For the problem considered by Shercliff it  is found 
that, neglecting terms which are exponentially damped for high M ,  the mean 
velocity can be written in a closed form involving tabulated functions. It has 
not been possible to obtain a similar simple result for the case of conducting 
walls, but it is possible to obtain as many terms of an asymptotic expansion as 
one wishes. I n  the present case five terms are obtained. For both cases the 
resulting expansions are accurate to within about 5 yo for M = 10. 

2. Non-conducting walls 
The exact solution for steady magnetohydrodynamic flow in a rectangular 

tube with non-conducting walls was first obtained by Shercliff (1953). Shercliff 
found that the mean velocity, wo, was given by 

where N 2  = M 2 +  (2n+ 1 )  ;rr2a2/b2, M is the Hartmann number, E is a constant 
determined by the pressure gradient and 2a, 2b, represent the lengths of the 
sides of the tube. The applied magnetic field is in the direction of the sides of 
length 2a. In  the following analysis the dimensionless parameter nalb will be 
denoted by A. 

We have, on neglecting terms which are exponentially damped for large M ,  
that 

where 

33Eb2 1 64kb2 

774 n=O q4 m4A2 
wo - ~ ,----+-I, 

It follows from the identity (Watson 1944, p. 146) 

that  

[ - y(a2 + p”)”] 
(P+y2)& (a2+p2)* ’ 

tdt = exp ~- 
J,,(Pt) exp [ - a(t2 + y2)4] ~ _ _  

(3) 

(4) 

1 = M2(& - N3) + A2(L2 - N2),  ( 5 )  



TI’. E.  Willicxms 264 

where 

and 

(T  = 2 , 3 ) ,  
co J , (Mt)  tg,[( 1 + t2)):]  dt 

(1 +q-- -- 

enables equation (6) to be re-written as 

The path of integration in equation (10) may be deformed into the upper haIf 
of the complex t plane and, in view of the branch point of the integrand at t = i, 
may be replaced by the loop integral around the imaginary axis cut from i to im. 
Hence 

0 

L, = 77 e A f / o a ~ o [ ~ ~ ( w 2  + 1 )*I fi.(w) dw, (11) 

where 

= Gb,,(h~) - 2p2‘GI2,(2h~). (12) 

The notation in equation (12) is that suggested by Lewin (1~68).  In the interval 
0 < 0 < 377 the function GI2,(@ can be expressed in terms of the Bernoulli 
Polynomials B2,(O/2;.) (Lewin 1958) and hence 

All the 
as M - t m  

4- N 

terms in equation (13) with n > 0 will be exponentially damped 
and hence 

The asymptotic forms of the integrals in equation (14) could now be obtained 
by replacing K, by its asymptotic expansion, the resulting integrals would then 
be of the type considered by Erdelyi (1956) and the complete expansion could 
be obtained by integration by parts. It is simpler, however, to replace the 
upper limits in the above integrals by infinity, the error involved in this replace- 
ment being exponentially small for large Jl. We then have hhat 
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The integrals in equation (15) may be evaluated in closed form (Watson 1944, 
p. 417), giving 

From equations ( 7 )  and (9) it  follows that 

N, = I /omHhl)(Mf) g,(t) dt - Y /umH&l)(,Zlt e‘”) g,(t) dt. ( 1 8 )  

The behaviour of the Hankel function a t  infinity shows that the path of integra- 
tion in the first integral in equation (18) may be replaced by a path along the 
positive imaginary axis. Similarly the path in the second integral may be 
replaced by one along the negative imaginary axis. Hence 

AT, = - Ko(J1t) [g,( i t)  + gr( - i t ) ]  dt 
n o  r 

K0(&If) [a?,,.(&) - 2-2rGl,,(2hf)] dt. (19) 

The asymptotic evaluation of N ,  may now be completed by an analysis similar 
to that leading to equations ( 1 6 )  and (17), the final result being 

1 (3n6 15n4h2 135h47r2 3-36 x3 - - A5 ( 2 0 )  
B !  \4M 4M3 4J!5 M6 ( ’  

(21) 

Equations ( 3 ) ,  ( 5 ) ,  (16), (17), (30) and (31) now give 

The first terms of the asymptotic expansions of the B functions show that 

The value (to four significant digits) of the coefficient of [ a , / b N ~ ]  in equation (23) 
is - 0.851 1; the corresponding coefficient obtained by Shercliff by a boundary- 
layer method is - 0.853. 

As the derivation of equation ( 2 2 )  is moderately ehborate i t  is of interest to 
note that the approximate equation ( 2 3 )  can be derived in a more elementary, 
but less rigorous, fashion. This alternative method will now be considered. 
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Direct expansion of equation (3) shows that 

{ 1 - - e ~ p [ - t ( 2 n + l ) ~ ] }  1 
I = - M E  + i t 2  3 ~ 

n=O (2n+ 1)6 n=O (2n + 
(1 - exp [ -t(2n+ 

- t  s 
a = O  (276 + i f 4  

(34) 

where t = h2/3M. We also have that 

a, 

C exp[-s(2n+1)2]ds, (26) 
n - 0  Y 

" 1  0: 

( t -s)  exp[-s(2n+ 1)2]ds. (26) 
r- j l - e ~ p [ - t ( 3 n + 1 ) ~ ! ) = ~  

n s = 0 ( 2 n  + 1)4 n,=(J (3% + 
It follows immediately from the Poisson summation formula that 

3 a, exp [ - s( 2n + 1)2] - l(?)+ - + terms which tend to zero exponentially as s --f 0. 

( 2 7 )  
1) = 0 

The approximate equation ( 2 3 )  may now be deduced immediately from equations 
(a), (24) to  ( 2 7 ) .  

3. Perfectly conducting walls 
The exact solution for steady magnetohydrodynamic flow in a rectangular 

tube with perfectly conducting walls was obtained by Chang & Lundgren (1961). 
From their results, and using the notation of the previous section, it follows that, 
neglecting terms which are exponentially damped for large M ,  

where = Q( 2n + 1) 7r. 
The first term in equation (28) may be written in a closed form as 

(Ea2/M2) ( 1 - M-l tanh M )  

and is the exact form for the mean velocity between two parallel conducting 
planes separated by a distance 20,. The other term in equation (28) may be 
written as - 64 2iu3ES'/bn5 where 

1 W 

# =  -s 
1L2" ( 3 n  + l)% {(3n + 1 ) 2  + C2)Q [2n + 1 + {( 3% + 1 ) 2  + c2}3]J 

and c = 2M/n. It follows from the identities (Watson 1941, p. 386) 
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m p ( 2 n f l )  

H ( z )  ==:o (2n+ 
where 

H ( z )  is directly related to the @ function considered in Erdelyi (1953) and from 
equation (8) of this reference it may be shown that 

(-)%a 
~- C(# -n)(  1 - 2 7 3 ,  H ( z )  = -(nz)*+ 

a = ~  n !  

where C(s) is the Riemann Zeta-function. 
S can clearly be written in the form S, - S, where 

and 

cos cy dy 
dx, 

1 2 dydx 
S2 = 2c2n IoaH(x) cos cx 

1 2 9  
= c2 -- (-- 77 ) / r x * H ( x )  cos cxdx. 

Re-arrangement of equation ( 3  1 )  gives 

the order of integration in the double integral in equation (32 )  may now be 
interchanged and we finally obtain 

(33) 

The integrals in equation (33)  are standard Fourier integrals whose asymptotic 
expansions may be obtained from the general formulae given by Lighthill (1958) 
provided that expansions valid near x = 0 can be obtained for the functions 
multiplying the trigonometric ones. The expansions for H ( x ) ,  x*H(x) follow 
immediately from equation (30) and also from this equation it follows that 

Lighthill’s general formulae now give 
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the first term of the above expansion could have been deduced immediately from 
the form of 8. Finally 
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